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NOTICE

This report was prepared as an account of Government-
sponsored work. Neither the United States, nor the
National Aeronautics and Space Administration (NASA),
nor any person acting on behalf of NASA:

A.) Makes any warranty or representation, expressed
or implied, with respect to the accuracy, com-
pleteness, or usefulness of the information
contained in this report, or that the use of
any information, apparatus, method, or process
disclosed in this report may not infringe
privately-owned rights; or

B.) Assumes any liabilities with respect to the
use of, or for damages resulting from the use
of, any information, apparatus, method or
process disclosed in this report.

As used above, ''person acting on behalf of NASA" includes
any employee .or contractor of NASA, or employee of such
contractor, to the extent that such employee or contractor
of NASA or employee of such contractor prepares, dissemi-
nates, or provides access to any information pursuant to
his employment or contract with NASA, or his employment
with such contractor.




NASA CR-72584

FINAL REPORT

Development of Cost-Optimized Insulation
System for Use in Large Solid Rocket Motors
Volume IV: Task IV - 260-In.~-Dia Motor Insulation System
Design and Process Plan

by:

Dr. B. A. Simmons, Manager, Space Booster Department
and
D. L. Nachbar, Project Manager, LMISD Program

Aerojet-General Corporation
Sacramento Facility, Solid Rocket Division
Sacramento, California

Prepared for:

National Aeronautics and Space Administration

August 1969

Contract NAS3-11224

NASA-Lewis Research Center
Cleveland, Ohio
J. J. Pelouch, Jr., Project Manager
Chemical Propulsion Office



NASA CR-72584

FOREHORD

The insulation development work described herein, which was conducted
by the Solid Rocket Division of Aerojet~General Corporation, was performed
under NASA Contract NAS3-11224. The work was accomplished under the manage-
ment of the NASA Project Manager, Mr. J. J. Pelouch, Jr., Chemical Propulsion
Division, NASA-Lewis Research Center.
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ABSTRACT

A program to develop a cost-optimized insulation system for large
solid rocket motors was conducted by Aerojet-General Corporation under
Contract NAS3-11224, Four tasks were derived to accomplish the program
Task I, Survey and Screening; Task ITI, Process Demonstration; Task III,
Material Performance Determination; and Task IV, Preparation of 260~in.~-
dia full-length motor insulation system Design and Process Plan, Task IV
is the subject of this volume of the final report.

Preliminary designs based on observed material erosion rates were
prepared for eight potential 260-in.-dia full-length motor insulation systems,
Weight, production costs, and tooling concepts were derived from these pre-
liminary designs for the various insulation systems. Trowelable IBT~100
insulated domes and nozzle and trowelable IBT-106 insulated sidewall and
propellant boots were the selected insulation system. An alternative system,
which incorporated USR-3800 in the aft dome and nozzle, was recommended. A
requirement/capability analysis was conducted on the selected IBT-100/IBT-106
system. A material performance standard deviation of 15.1 percent and an
allowable failure probability of 10-6 were the key parameters used for the
R”C Analysis. Insulation material thicknesses required to protect against
propellant defect diameters of 0-, 2-, 4—, 8-, and 12-in., and required
insulation weight as a function of allowable propellant defect size were
determined. The R||C Analysis results indicated that the most significant
parameter controlling required imsulation thickness, and subsequently total
system weight, was the material performance standard deviation. The observed
V-44 material performance standard deviation was used for this analysis, as
there were insufficient performance data with the IBT materials upon which
to base a standard deviation wvalue.

The following are the final 260-FL motor IBT-100/IBT-106 insulation
system design characteristics:

Total Weight, 1b 44,645
Performance Standard Deviation, 7% 15.1
Allowable Probability of Failure 10—6
Allowable Propellant Defect Size, in. dia 8
Estimated Production Cost per Motor $141,684
Estimated Initial Tooling Cost $75,900

A comparable V-44/V-45 insulation system would weigh 42,992 1b, and the esti-
mated production cost would be $343,864, assuming a base-cost of $8.00 per 1b
installed. Suggested follow-on work includes verification of insulation-to-
propellant bond strength without liner material; multiple small scale motor
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ABSTRACT (cont)

tests with IBT-100 and IBT-106 to establish a material performance standard
deviation; and to process and test the selected 260-FL motor insulation
system in an intermediate size solid propellant motor.

NASA report numbers and corresponding volume numbers are as follows:

CR~72581
CR-72582
CR-72583
CR-72584

vi

Volume I

Volume II
Volume III
Volume IV
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I. SUMMARY

The objective of the Large Motor Insulation System Development (LMISD)
Program is to evaluate low-cost insulation materials that are applicable to
large solid-propellant rocket motors. Four tasks were derived to accomplish
the planned objective., Task I, which is described in Volume I of this report,
involved a survey of available materials applicable to large motors; selection
of 20 candidate materials, including Gen-Gard V-44 and V-61 as controls;
measurement of candidate material physical, chemical, mechanical, thermal,
and adhesive properties; evaluation of material erosion resistance in three
solid-propellant motor te ts; evaluation of property measurement and motor
test data; and selection of 12 materials, including V-44 control, for further
evaluation in Tasks II and IIT. In Task II, which is the subject of this
volume, candidate materials selected in Task I were installed into a 54-~in.-dia
motor chamber. Task III includes material performance determinations in fiye
solid-propellant motor tests. Task IV is the preparation of a 260-in.-dia
full length Motor cost-optimized insulation system design and process plan,
using materials selected on the basis of data obtained from Tasks II and III.

The cost-optimized insulation system was designed for the 260-in.-dia
full-length motor configuration related to the mission and performance of the
260/5-1IVB vehicle defined by McDonnell-Douglas for the Saturn IB improvement
study. Preliminary designs were prepared for the following potential insula-
tion systems:

1. V-44 pressure-cured aft dome and nozzle
V-45 pressure-cured fwd dome, sidewall, and propellant boots

2. IBT-100 troweled fwd and aft dome, and nozzle
IBT-106-2 troweled sidewall and propellant boots

3. IBT-100 troweled fwd and aft dome, and nozzle
IBS-107 sprayed sidewall and propellant boots

4, IBT-106-1 troweled fwd and aft dome, and nozzle
IBT-106-2 troweled sidewall and propellant boots

5. IBC-111 cast fwd and aft dome, and nozzle
IBT-106-2 troweled sidewall and propellant boots

6. 40SD~80 cast fwd and aft dome, and nozzle
IBT-106-2 troweled sidewall and propellant boots

7. TI~-H704B troweled>(tamped) fwd and aft dome, and nozzle
TI-H704B troweled (tamped) sidewall and propellant boots

8. IBT-100 troweled fwd dome

USR-3800 pressure-cured aft dome and nozzle
IBT~106~2 troweled sidewall and propellant boots

Page 1
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I. Summary (cont)

The preliminary insulation systems reflected only designs based on
expected TLR-vs~Mach number performance, and did not include allowances for
3 sigma performance variations, propellant defects, material critical defect
sizes, core misalignment, and premature exposure considerations. These pre-
liminary designs were prepared only to show the relative cost and weight of
each potential system.

Estimated recurring production costs for the various insulation systems
were prepared, and included raw material, batch mixing, installation operations,

NDT inspection, and labor and facility overhead costs.,

The following table is an insulation system cost and weight summary:

Estimated Recurring*¥ Estimated®* Insulation

Production Non-Recurring Weight
Insulation System Cost Per Motor Tooling Cost in Motor, 1b
V~45/V-44 (control) $ 173,680% N/A 21,710
IBT-100/IBT-106 71,320 $ 75,900 22,545
IBT-100/1IBS~-107 72,913 178,800 20,920
IBT-106 77,219 75,900 24,485
IBC~-111/IBT-106 89,078 124,900 25,275
40SD-80/IBT-106 146,513 124,900 35,790
IBT-100/USR-3800/IBT-106 79,938 68,900 19,789
TI-H704B - - 23,540

* Estimated at $8.00/1b installed
*% Excluded fixed-fee

The IBT-100/IBT-106 insulation system was recommended, with IBT-100/USR~3800/
IBT-106 as an alternative.

The calculation of maximum allowable propellant defect size versus
required insulation thickness was performed on the IBT-100/IBT-106 system by
means of a requirements vs capability (RHC) analysis. 1In this type of analysis,
statistical distributions are established for the requirement, expressed as
the maximum exposure time that must be provided for, and the capability,
expressed as the total time required to burn through propellant and insulation.
In the usual RHC analysis, failure probability is calculated as the probability
of the requirement exceeding the capability. 1In this analysis, however, the
failure probability is known and the capability is reduced by the unknown term
relating to minimum propellant defect size.

Page 2



NASA CR-72584
I. Summary (cont)

Several ground rules were specified by the NASA/LeRC Project Manager
for the RHC Analysis. Primarily, the probability of burning through the
insulation was assigned a limit criteria of 10-6. Secondly, the wvariation in
erosion rate for the IBT-100 and IBT-106 materials was assumed to be equivalent
to that observed for V-44. The following summarizes the values used in the

analysis:
Standard Standard
Av, Value Deviation  Deviation
Parameter Symbol X s/X% s, Units Source
Propellant thickness t Varies 0.22 Varies, in. 260-in. Reli-
consumed prior to web v ability Study
time, in. Final Report,
plus maximum
core shift of
0.25 in.
Propellant thickness tto 2.5 0.22 0.005 in. 260-in. Reli-
consumed during tail- ability Study
off, in. Final Report,
plus maximum
core shift of
0.25 in.
Propellant pouring r 0.606 1.35 0.00818 260-in. Reli-
rate prior to web v in./sec ability Study
time, in./sec Final Report
Propellant burning Teo 0.333 1.35 0.0045 260-in. Reli-
rate during tail- in./sec ability Study
off, in./sec Final Report,
plus maximum
core shift of
0.25 in,
Insulation thickness, t, Varies Varies 0.0167 in. Print tolerance
in. * of + 0.050
assumed equal
to + 3 sigma.
Insulation erosion T, Varies 15.1 Varies, %% from V-44
rate, in./sec in./sec

Page 3
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NASA CR-72584
I. Summary (cont)

The RHC Analysis approach to insulation system design leads to a sig-
nificant increase in inert stage weight. A comparison of calculated 260-FL
motor insulation weights are presented as follows:

Calculated Insulation System Weight, 1b

R/C Analysis R/C Analysis
1.5 Safety No Allowable 12-in.~-dia Allowable
Factor Propellant Voids Propellant Voids
Total Motor Insulation
System Weight 22,545 40,495 46,005

Significant tradeoffs were conducted in conjunction with the R||C Analysis.

The two parameters that most affect the required insulation thicknesses were
the standard deviation of insulation erosion rate from the nominal, (S)ri, and
the probability of insulation burnthrough allowable limit, P(I). The following
table shows the effect of reducing (S)r{ from 15.1 to 7.5% and increasing P(I)
from 10™° to 1073 on the required insulation thicknesses at two selected stations:

Insulation Thickness, in.
(8)ry =0.151 (S)rj =0.075 (S)ry =0.151 (S)ri==0.075
P(I) = 1076 P(I) = 106 P(I) = 10-3 P(I)'= 1073
1.5 No Allowable No Allowable No Allowable No Allowable

Safety  Propellant Propellant Propellant Propellant
Station Factor Voids Voids Voids Voids
3% 0.70 1.09 0.50 0.58 0.42
13%% 3.00 6.99 3.20 3.75 2.60

From the foregoing comparisons and tradeoffs, the most controlling
parameter in relating the insulation system requirement to its capability is
the standard deviation of material erosion rate from the nominal, (S)r., and
the failure probability )(I), +

The final 260-FL motor insulation system design characteristics are
shown as follows:

Forward Dome:

Material IBT-100
Weight, 1b 7410
Installation process Trowelable
*Sta 3 - Equator, forward dome and sidewall
**Sta 13 -~ Nozzle step joint

Page 4
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I. Summary (cont)

Sidewall:
Material IBT-106
Weight, 1b 16,630
Installation process Trowelable
Aft Dome:
Material IBT-100
Weight, 1b 11,005
Installation process Trowelable
Nozzle:
Material IBT-100
Weight, 1b 5,065
Installation process Trowelable

Propellant boots:

Material IBT-106

Weight, 1b 4,535

Installation process Trowelable
Total insulation system weight, 1b 44,645

Probability of imsulation burnthrough, P(I) 10~

Material performance standard deviation,
S/X, % 15.1

Allowable propellant void dia, in. 8

The estimated 260-FL motor IBT-100/IBT-106 insulation system production
cost is $141,684; the estimated Initial tooling cost is $75,900. A comparable
V-44/V-45 insulation system would weigh 42,993 1b, and the production cost per
motor would be $343,864, assuming a base cost value of $8,00/1b installed.

Three areas of follow-on large motor insulation development work are
recommended, First, propellant-to~insulation bondline tensile and shear
strength tests should be repeated to verify deletion of liner material, Second,
the IBT-100/IBT-106 performance values and selected processes used for the
insulation system design should be verified in intermediate-size motor test
firings. Third, small scale motor tests should be conducted to establish an
IBT-100/IBT-106 material performance standard deviation value.

Page 5
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IT. INTRODUCTION

A. PURPOSE OF REPORT

This document is the fourth volume in a series of final reports
dealing with the major tasks of the Large Motor Insulation System Development
(LMISD) Program, Contract NAS3-11224. This series of reports constitutes the
LMISD Program final report. This report summarizes in detail the Task IV effort
for the LMISD Program.

B. SCOPE OF EFFORT

This report volume summarizes in detail the Task IV effort for the
LMISD Program. The following work was accomplished:

1. Eight preliminary 260~FL motor insulation system designs
were prepared using various insulation materials either singly or in combi-
nation.

2. The weights of the various insulation systems were calculated.

3. Tooling concepts were derived for installation of the various
materials.

4, Production and tooling costs were estimated for the eight

preliminary insulation systems.

5. A tradeoff study was conducted based on cost and performance
to select the most cost-optimized system.

6. The trowelable IBT-100/IBT-106 system was recommended for
application to 260-FL motors, with IBT-100/USR-3800/IBT-106 as a desirable

system.,

7. A requirement/capability analysis was conducted on the
selected system to establish a final design.

8. A design layout drawing was prepared showing the final
260~FL motor insulation system.

9. Final production and tooling cost estimates were prepared
for the selected system.

10. An insulation system process plan was prepared.

Page 6
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IIT. PHASE I: 260-IN.-DIA MOTOR INSULATION SYSTEM DESIGN

A, 260-IN.-DIA MOTOR DEFINITION

The cost-optimized insulation system was designed for the 260~in.-
dia full length motor configuration shown in Figure 1. A performance summary
and predicted pressure-vs-time curve for this motor configuration are shown
in Figures 2 and 3, respectively. In the tradeoff study prepared to select
the cost-optimized system, stage weight, inert weight, burnout velocity, and
stage cost per 1lb parameters were related to the mission and performance of
the 260/SIVB vehicle defined by McDonnell-Douglas for their Saturn IB Improve-
ment Studyl.

B. PRELIMINARY INSULATION SYSTEM DESIGN

Data obtained from Tasks I, II, and IIT were analyzed, and a
tradeoff study emphasizing performance and processing was performed for the
materials evaluated.

A preliminary design effort was performed to establish insulation
thicknesses required at various sections of the motor. The preliminary design
approach determined the required insulation thickness directly from expected
material erosion (TLR) rates. Insulation design thicknesses were calculated
as a product of thickness loss rate at full and reduced operating pressure,
exposure time at full and reduced pressure, and a safety factor; the follow-
ing equation was used:

_ 0.3
t = (SF) [(Pc/éoo) (el) (TLRl) + (92) (TLRZ)]

where: t is design thickness, in.
SF is the safety factor
0.3 ., . .
(P./600) is a correction factor for motor operating pressures

other than 600 psi (for 260-in.-dia motor application, this term
is unity)

Gl is exposure time to full motor operating pressure (web burning
time), sec

TLRy; 1is insulation material thickness loss rate at the Mach
number of a local area ratio, in./sec

1: Saturn IB Improvement Study (Solid First Stage) Phase II, Douglas Missile
and Space Systems Division Report No. SM-51896, dated 30 March 1966,

Page 7
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Preliminary Insulation System Design (cont)

8, 1is exposure time to reduced operating pressure during tailoff,
and afterburn, sec

TLRy 1is insulation material thickness loss rate at reduced
pressure during tailoff and afterburn, in./sec

Exposure time is a function of web burning duration, propellant grain config-
uration, and propellant burning rate. Because the TLR is a function of
operating pressure and gas velocity, each area of the motor was analyzed
separately to determine the local conditions to which insulation is exposed.

A list of materials and installation processes which were appli-
cable to various sections of a 260-in.-dia full length motor foellows:

Material

Forward Dome

V-45
IBT-100
IBT-106-1
IBC-111
40SD-80
TI-H704B

Sidewall

V=45
IBT-106-2
IBS-107
IBS-109
TI-H704B

Aft Dome and Nozzle

Boots

V-44
USR-3800
IBT-100
IBT~106-1
IBC-111
40SD-80
TI-H704B

V=45
IBT-106-2
IBS-107
TI-~H704B

Installation Process

precured components, secondarily bonded; V-61 joints
troweled

troweled

cast

cast

special tamping process

precured strips, secondarily bonded; lapped joints
troweled

sprayed

sprayed

special tamping process

precured components, secondarily bonded; V-61 joints
precured components, secondarily bonded; V-61 joints
troweled

troweled

cast

cast

special tamping process

precured components, secondarily bonded; Germax V-45 seams
troweled

sprayed

special tamping process

Page 8
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III.B. Preliminary Insulation System Design (cont)

The first step in selecting the cost-optimized insulation system was to pre-
pare preliminary insulation system designs using the materials in the foregoing
table. Figure 4 is a summary of nominal material thickness loss rate-vs-initial
Mach number performance data obtained from LMISD test motors in Tasks I and III.
Included in Figure 4 are performance data for V-44 and IBT~100 obtained from
actual large motor static test firings. In Figure 5, performance of IBT-106,
40SD-80, IBC-111, IBS-107, and TI-H704B were related to V-44 performance,

using the LMISD Motor V-44 to 260-SL Motor V-44 performance ratio as a guide-
line. The expected large motor performance data (Figure 5) do not represent

a final data summary. Actual performance data can be obtained only from
insulation performance measured in actual large motor test firings. The data
in Figure 5 were intended only to show material performance relative to V-44,
and to provide a common performance basis for selecting a cost-optimized
insulation system design.

Preliminary 260-FL insulation system designs using various combin-
ations of candidate materials are shown in Figure 6 through 13; performance
analysis summary sheets are shown in Figures 14 through 21. The following
insulation systems were included:

1. V-44 pressure-cured aft dome, and nozzle
V-45 pressure-~cured fwd dome, sidewall, and propellant boots

2. IBT-100 troweled fwd and aft dome, and nozzle
IBT-106-2 troweled sidewall and propellant boots

3. IBT-100 troweled fwd and aft dome, and nozzle
IBS-107 sprayed sidewall and propellant boots

4, IBT-106-1 troweled fwd and aft dome, and nozzle
IBT-106-2 troweled sidewall and propellant boots

5. IBC-111 cast fwd and aft dome, and nozzle
IBT-106-2 troweled sidewall and propellant boots

6. 40SD-80 cast fwd and aft dome, and nozzle
IBT-106-2 troweled sidewall and propellant boots

7. TI-H704B troweled (tamped) fwd and aft dome, and nozzle
TI-H704B troweled (tamped) sidewall and propellant boots

8. IBT-100 troweled fwd dome

USR-3800 pressure~cured aft dome and nozzle
IBT-106-2 troweled sidewall and propellant boots

Page 9
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II1.B. Preliminary Insulation System Design (cont)

A weight summary of the foregoing insulation systems is shown in Figure 22,

Significantly, the preliminary insulation systems (Figures 6
through 13) show only designs based on expected TLR-vs-Mach number performance
and did not include allowances for 3-sigma performance variations, propellant
defects, material critical defect sizes, core misalignment, and premature
exposure considerations. These preliminary designs were prepared to show
the relative cost and weight of each potential system. When the final
insulation system was recommended and approved by the NASA-LeRC Project
Manager, a requirements/capability analysis was applied to the selected
design. The application of RHC analyses to all potential insulation systems
was beyond the program scope.

Estimated recurring production costs for the various insulation
systems are shown in Figures 23 through 28. Raw material, batch mixing,
installation operations, and NDT inspection costs were included. A summary
of estimated tooling costs is shown in Figure 29,

The following table in an insulation system cost and weight summary:

Estimated Recurring#% Estimated#* Insulation
Production Non-Recurring Weight
Cost Per Motor Tooling Cost in Motor, 1lb

V-45/V-44 (control) $ 173,680% N/A 21,710
IBT-100/IBT-106 71,320 $ 75,900 22,545
IBT-100/1IBS~107 72,913 178,800%%%* 20,920
TBRT-106 77,219 75,900 24,485
IBC-111/IBT-106 89,078 124,900 25,275
40SD-80/IBT-106 146,513 124,900 35,790
IBT-100/USR-3800/IBT-106 79,938 68,900 19,789

TI-H7048

* Estimated at $8.00/1b installed

*% Excluded fixed-fee
*%%Tncludes $125,000 estimated cost for automatic spray equipment

The cost and weight of the castable-trowelable systems, IBC-111/
IBT-106 and 40SD-80/IBT-106, were prohibitive. The trowelable-sprayable
system, IBT-100/IBS-107, was competitive on a weight basis. However, uncer-
tainty of the installation process and the absence of large scale process

Page 10
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III.B. Preliminary Insulation System Design (cont)

demonstration removed this system from consideration. A more detailed
analysis was required to compare the IBT-100/IBT-106 and IBT-100/USR-3800/
IBT-106 systems. The latter system was more competitive on a weight (2755-1b
differential) and non-recurring tooling cost basis ($7000 differential).
However, the recurring production costs were higher ($14,217 differential).
Performance tradeoffs? were applied as follows to determine overall net
advantage or disadvantage of the lower weight, higher production cost system:

BV/BMe = ~0,01095 (ft/sec)/lbm
BV/BMS = 0.00118 (ft/sec)/lbm
where V = wvelocity, ft/sec
Me = dnert wt, 1lbm
MS = stage wt, 1b
oV = BMe (-0.01095)
oM (~0.01095)
M, = 550118
The oM = -=2755 1b, therefore, the reduction in stage weight,

oM , is 25,055 1b.% As reported also in Reference (a), the stage weight cost
.S
is”81.63/1b.

25,055 1b at $1.63/1b $40,840
Less differential production cost = -8,618
$32,222 recurring
7,000 non-recurring
Total Advantage $39,222
The trowelable-pressure cured insulation system of IBT-100/USR-3800/IBT-106

presents a cost advantage over the IBT-100/IBT-106 trowelable system. Cur-
rently, the concern with full recommendation of the trowelable-pressure cured

2: Aerojet-General Corporation Final Report, Study of Low-Cost Materials
for 260-in.-Diameter Motors, Contract NAS7-513, 16 May 1969.

Page 11
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ITI.B. Preliminary Insulation System Design (cont)

system was the processing characteristics of USR-3800 for large motor appli-
cations. USR-3800 contains a relatively high percentage of boric acid filler.
Voids caused by boric acid expansion during the cooldown period of the cure
cycle were encountered in the early experience with this material. Since
then, fabrication problems apparently have been overcome; the material has
been used successfully by Aerojet in the Polaris A3 motor and by Thiokol
Chemical Corporation in the Poseidon motors.

It was recommended that IBT-100/IBT-106 be considered the primary
insulation system, with IBT-100/USR-3800/IB T-106 as an alternative.

C. REQUIREMENTS/CAPABILITY ANALYSIS

The sequence of an insulation burnthrough failure originates with
an advancement of the flame front at a rate faster than planned, resulting in
the flame front traversing through the propellant or along the propellant~
liner interface and eroding through the insulation prior to the end of action
time. In terms of defects, any void, region of porosity, fissure, and crack
in the grain or extending radially from either the inner or outer surface
might be considered the initiator of the failure sequence. Included would
be defects in the cylindrical part of the grain and at the base of the fin
slots. Defects in the fins themselves would normally be excluded in this
failure mode. Propellant-liner unbondedness can advance the flame front,
Depending on motor geometry, any propellant-liner bond failure that results
in a net Increase in flame front advancement over that expected can be con-
sidered as an initiator of the failure sequence.

The calculation of maximum allowable undetected propellant defect
size vs required insulation thickness was performed by means of a Requirements~
vs—Capability (RHC) analysis3. In this type of analysis, statistical distri-
butions are established for the requirement, expressed as the maximum exposure
time that must be provided for, and the capability, expressed as the total
time required to burnthrough propellant and insulation. In the usual R||C
analysis, failure probability is calculated as the probability of the require-
ment exceeding the capability. In this analysis, however, the limit of
failure probability is established and the capability is reduced by the
unknown term relating to minimum propellant defect size. The basic RHC
formulationA, which assumes that the Requirement and Capability parameters
are normally distributed, is as follows:

3: TEMPO Report 66TMP-90, The Analytical Approach and Physics-of-Failure
Technique for Large Solid Rocket Reliability, Contract NAS7-383,
General Electric Company, dated 1 March 1967.

4: TEMPO Report 68TMP-78, An Application of the Requirements-vs—Capability
Analysis to Estimating Design Reliability of Solid Rocket Motors,
Contract NAS7-556, General Electric Company, dated July 1968.
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ITI.C. Requirements/Capability Analysis (cont)

where X, and (s)c are the average and standard deviation of the capability
parameter, insulation erosion protection, seconds

iﬁ and (s)R are the average and standard deviation of the

requirement parameter, required duration of erosion
protection, seconds

@ is the amount of pooled standard deviations between X and iR
that can be converted into the probability of R exceed-
ing C.

To express the capability in terms of propellant thickness, and insulation
thicknesses and erosion rates, and to take into account the reduction of the
capability due to undetected voids, the basic formula was modified as follows:

R S S

_ I'W ri rw

b ) 2
/(S)C +  (s)

R
where V = void diameter, in.
r, Propellant burning rate prior to web burn out, in./sec
tW = Propellant thickness, in.
ti = Insulation thickness, in.
r:.L = Tnsulation erosion rate, in./sec

Solving for Ti’ we obtain

- ot
b T ri(¢ /(S)i * (S)g) +ri(_‘r£—)+ri(XR_;ﬂ)
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ITII.C. Requirements/Capability Analysis (cont)
Presented in this method, the term ri'( XR -7

NASA CR-72584

)is the insulation thickness

. . . . W o, . ,
required for the nominal duration for which the insulation is exposed to

direct flame. The term ri @ //(s)i + (s)é is the additional thickness

required to provide protection for departures from nominal performance, while

r, ( %}-) is the additional thickness required to protect against undetected

voids.

Several rules were specified by the NASA/LeRC Project Manager for

the R||C Analysis.

was assigned a limit criteria of 107°,

First, the probability of burning through the insulation
At this magnitude of failure mode

probability, the amount of pooled standard deviations between Xc and X_ which
can be converted into the probability of the Requirement exceeding the Capa-

bility, § , is 4.75.

Second, the variation in erosion rate for the IBT-100

and IBT-106 materials was assumed to be equivalent to that observed for V-44.
The following summarizes the parameter values used in the analysis:

Av. Standard Standard
Value Deviation Deviation
Parameter Symbol X s/X % s, Units
Propellant thickness tw Varies 0.22 Varies, in.
consumed prior to web (Figure
time, in. 29)
Propellant thickness t 2.5 0.22 0.005, in.
. to
consumed during tail-
off, in.
Propellant burning T 0.606 1.35 0.00818
rate prior to web in./sec
time, in./sec
Propellant burning L 0.333 1.35 0.0045
rate during tail- in./sec

off, in./sec

Source

Reference 5
Report, plus
maximum core
shift of 0.25 in.

Reference 5
Report, plus
maximum core
shift of 0.25 in.

Reference 5
Report

Reference 5
Report plus
maximum core
shift of 0.25 in.

5: Aerojet—-General Corporation, Final Report, 260-Inch Motor Reliability

Study, Contract NAS7-572, dated November 1968.
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III.C. Requirements/Capability Analysis (cont)

Av. Standard Standard
Value Deviation Deviation
Parameter Symbol X s/X % s, Units Source
Insulation thickness, t, Varies Varies 0.0167 in. Print tolerance
in. * of +0.050
assumed equal
to + 3 sigma
Insulation erosion r, Varies 15.1 Varies, X from
rate, in./sec (Figure in./sec Figure 5
29) .
— % from V-44
X
insulation

erosion data
from Polaris A3
and Minuteman
motor tests.

The following calculations were made:

1. XR and (sR)

The value for _', the requirement, was evaluated as the time
required for the propellant to burn through to the insulation at the point of
maximum web thickness. The following formula was used:

t t
o E
w to
where tW =  maximum thickness of propellant consumed prior to

web time, in.

r, = propellant burning rate prior to web time, in./sec

Fto = maximum propellant thickness consumed during tailoff,
in.,

To = propellant burning rate during tailoff, in./sec

Using the value of 85.0 and 2.5 for ty and t, and the values of 0.606 and
0.333 in./sec for r, and T o2 an XR of 147.5 sec, equivalent to nominal
action time, was obtained.
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IITI.C. Requirements/Capability Analysis (cont)

The standard deviation of the requirement, (s)R, was estimated
from the propagation of variance formula:

()2 - [}L_ (s) ‘] 25 @2 e P ke ) | 2
w

2 t T 2 T Tto tto (r )2 Tto
W to
A value of 1.92 sec for (s)i was obtained, using the values shown in the

foregoing parameter value table.

2. (s)c
To simplify the calculation of the standard deviation of the
capability (s)c it was assumed that:

t,
=

r

t
r M
W 1

(s}

and the effect of the undetected voids, %—-, was neglected in calculated (s)c.
w

The formula for sC then became:

2 2 2 2
(s)2 = 1__(s)t + tw <S)r + -l— (S)t, + ti <S)r,
c rw W ) w ri i ) i
'y r,
w i

Substituting the values from the foregoing parameter value table, the follow-
ing expression was obtained:

s = 0.00057 th + 0.000278 l~5 + 0.0227 "ii

r, r,
1 1

As this equation for s, involved tj, it was necessary to make an iterative
solution for t. in the equation derived earlier. The results for 18 loca-
tions in the Z%O—FL motor are shown in Figure 30. These data assume no
propellant voids. Because of the simplifying assumption that the void effect

\'] . s . . .
term, gl did not affect 8.» the additional insulation required to protect for

w . . s \'
undetected voids was solved directly from the expression, ri T where r,
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III.C. Requirements/Capability Analysis (cont)

is the erosion rate at the station being analyzed. A summary of total
insulation thickness required for allowable propellant void diameters of
2-, 4~, and 8-, and 12-in. 1is presented in Figure 31. A plot of 260~-FL
insulation weight, excluding propellant boots, as a function of allowable
propellant void diameter is shown in Figure 32.

The RHC Analysis approach to insulation system design led to a
significant increase in inert stage weight. A comparison of calculated

260-FL motor insulation weights are presented in the following table:

Calculated Insulation System Weight, 1b

R||C Analysis R||C Analysis

No Allowable 12~-in.~dia Allowable
Section of Motor 1.5 Safety Factor Propellant Voids Propellant Voids
Forward dome 3,710 7,160 7,470
Sidewall 7,915 13,935 17,580
Aft dome 4,315 9,925 11,325
Nozzle 2,070 4,940 5,095
Propellant boots 4,535 4,535 4,535

Total 22,545 40,495 46,005

Applying the 260/S-IVB stage performance tradeoff previously described in
Section TIII.B. of this report, the change in burnout velocity, stage weight,
and stage cost were determined, and are summarized as follows:

No Allowable 12-in.~dia Allowable
Propellant Voids Propellant Voids
Burnout velocity, 3V, ft/sec -197 -257
Stage weight, BMS, 1b +16,670 +21,770
Stage cost, at $1.63/1b +$27,172 +$35,485

Other significant tradeoffs were conducted in conjunction with the R[c
Analysis. The two parameters which most affect the required insulation
thicknesses are the standard deviation of insulation erosion rate from the
nominal, (S)ry, and the probability of insulation burnthrough allowable limit,
P(I). The following table shows the effect of reducing (S)r; from 15.1 to 7.5%
and increasing P(I) from 106 to 10~3 on the required insulation thicknesses

at two selected stations:
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I1I.C. Requirements/Capability Analysis (cont)

Insulation Thickness, in.

(8)r; =0.151 (S)ry =0.075 (8)ry =0.151 (8)r; =0.075
P(I) = 107® P(I) =106 P(I) = 103  P(I) = 10-3
No Allowable No Allowable No Allowable No Allowable

1.5 Safety Propellant Propellant Propellant Propellant
Station® Factor Voids Voids Voids Voids
3 0.70 1.09 0.50 0.58 0.42
13 3.00 6.99 3.20 3.75 2,60

*Station location identified in Figure 30.

From the foregoing comparisons and tradeoffs, the most controlling
parameter in relating the insulation system requirement to its capability is
the standard deviation of material erosion rate from the nominal, (S)rj, and
the failure probability, P(I). The allowable propellant void size parameter
has a much smaller effect.

As shown in a previous table, the material erosion rate standard
deviation, S/X, was assumed to be 15.1%, which is the standard deviation value
for V-44 rubber observed in numerous Polaris A3 and Minuteman motor tests.
The newer IBX materials have not been tested in sufficient quantity to estab-
lish a realistic performance standard deviation value. Therefore, the RHC
Analysis assumed that the standard deviation value for IBX materials would be
equivalent to that of V-44. Tt is apparent that if the IBX material per-
formance standard deviation value could be reduced to 0.075, which is in the
range of that observed for V-45, the overall 260-FL motor insulation system
weight could be significantly reduced, while still maintaining an allowable
failure probability of 10-6.

D. FINAL 260-IN.-DIA MOTOR INSULATION SYSTEM DESIGN
The final 260-FL motor insulation system design selected as a
result of the LMISD Program effort is shown in Figure 33. The following table

summarizes the insulation system weight characteristics:

Forward Dome:

Material IBT-100

Wt, 1b 7410

Installation process Trowelable
Sidewall:

Material IBT-106

Wt, 1b 16,630

Installation process Trowelable
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III.D. Final 260-in.-dia Motor Insulation System Design (cont)
Aft Dome:
Material IBT-100
Wt, 1b 11,005
Installation process Trowelable
Nozzle:
Material IBT-100
Wt, 1b 5,065
Installation process Trowelable
Propellant boots:
Material IBT-106
Wt, 1b 4,535
Installation process Trowelable
Total Insulation System Wt, 1b 44,645
Probability of Insulation Burnthrough, P(I) 10—6
Material Performance Standard Deviation, S/i, % 15,1
Allowable Propellant Void dia., in. 8

The estimated 260-FL motor IBT-100/IBT-106 insulation system
production cost, detailed in Figure 34, is $141,684; the estimated initial
tooling cost is $75,900. A comparable V-44/V-45 insulation system would
weigh 42,993 1b, and the production cost per motor would be $343,864, assum-—
ing a base cost value of $8.00/1b installed.
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Iv. PHASE 1II: PROCESS PLAN

The general sequence of operations envisioned for installation of the
IBT-100/IBT-106 insulation system into a 260-in.~dia full-length motor are as
follows:

— Move 260-in.-dia motor case into insulation processing facility
and mount on motor—~driven turning rolls.

— 1Install lighting and equipment truss.
— 1Install environmental control equipment.

~—— Vacuum gritblast, clean, and prime case interior with
Fuller 162-Y-22.

—— Process and install forward and aft dome insulation.

— Cure dome insulation at ambient for 24 hr, then at 135°F for 48 hr.
— Install sidewall insulation.

—— Cure sidewall insulation at ambient for 24 hr.

— During 24~hr ambient cure, install aft casting adapter.

~— Cure dome insulation at 135°F for 48 hr.

-~  Apply DC-Q-92 release to forward and aft dome insulation surface.
— Install forward and aft propellant boots.

-— Cure propellant boots at ambient for 24 hr, then at 135°F for 48 hr.
— Install precured aft boot extension.

—— Complete NDT inspection.

— Complete all repairs if required.

-— Remove environmental control equipment and lighting and equipment
truss.

— Install mobile environmental control equipment.

—— Move case to CCT facility for propellant loading.
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IV. Phase II: Process Plan (cont)

The foregoing operations will require approximately 20 working days, assuming
three-shift operation. The environmental control system must be capable of
providing an interior temperature of 135 + 5°F, and a relative humidity level
of 30 percent, maximum. The motor-driven turning rolls must be capable of a
minimum constant chamber speed of 2 revolutions per hour (rph).

For this process plan, processing of insulation materials is accomplished
in G.H. Day Company 300-gal propellant mixers at the A-DD vertical batch mixing
stations. However, for a 260-FL motor production program, in-line mixing
equipment at the insulation processing facility may be desirable. After mixing
a pressure diaphragm is installed in the mix bowl, and insulation materials is
pressure-fed through the mix bowl bottom—draw off into 100-gal capacity mobile
transport pots. The vertical batch mix bowl is shown in Figure 35. The mobile
transport pot is similar to that shown in Figure 36. The transport pots then
are moved to the dinsulation facility. The following table summarizes the
insulation material batches required for insulating a 260-FL motor:

Wt of Material No. of Wt per Total Wt of
Section Installed, 1b Batches Batch, 1b Material Mixed, 1b
Forward Dome 7,410
Aft Dome 11,005 6 4,500 27,000
Nozzle 5,060
Sidewall 16,630 4-1/4 4,500 19,125
Propellant Boot 4,535 1-1/4 4,500 5,625

51,750 1b

The following paragraphs describe the various operations required to insulate
the 260-FL motor. A processing flow sheet showing the required processing
operations is presented in Figure 37.

A, CHAMBER PREPARATION

The 260-FL chamber is mounted on turning rolls in the enclosed
insulation facility. A truss beam, similar to that shown in Figure 38, will
be installed. Lighting, hoisting and environmental control equipment will be
attached to the truss. Vacuum blasting equipment will be moved into the
chamber and the interior surface will be blasted with No. 80-grit sand. After
removal of residual sand, the interior will be cleaned by multiple solvent
washings, followed by application of Fuller 162-Y-22 primer.
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IV. Phase II: Process Plan (cont)

B. FORWARD/AFT DOME INSULATION

A forward dome sweep template, similar to the concept shown in
Figure 39, will be installed. IBT-100 will be dispensed through a 3-in.-dia
flexible hose in front of the trowel, using overlapping passes, as demonstrated
in Task TI.

The aft dome sweep template will be installed as shown in Figure
40, and IBT-100 material will be dispensed and troweled in the same manner as
that described for the forward dome. When aft dome material is installed, the
aft sweep template tooling will be removed so that sidewall tooling can be
installed following the dome insulation cure cycle.

During the 24~hr ambient cure time, preliminary microwave and
ultrasonic NDT inspection will be accomplished. If major repairs are required,
they will be accomplished at this time. Following these operations, the 48 hr,
135°F cure cycle will be started.

C. SIDEWALL INSULATION

After cooldown from the dome insulation cure cycle, sidewall insu~-
lation equipment will be moved into the chamber. This equipment will include
a mobile trowel and a transport pot, as shown in Figure 41. During this time,
the profiles of the forward and aft dome insulation will be recorded.

An IBT-106 loaded transport pot will be hoisted and installed on
the mobile transfer pot base. A 3-in.-dia quick-opening valve will be in-
stalled on the bottom draw-off of the transfer pot. A 3-in.-dia by 8-ft-long
flexible tube will be connected to the valve and to the mobile trowel. A
compressed air hose will be connected and the transport pot will be pressurized
to 60 psig. The valve will be opened, and, when the trowel annulus fills
with material, the case turning rolls will be started. Material will be
applied to the case sidewall in a continuous spiral pattern, as demonstrated
previously in Task II of Contract NAS3-11224. The stepped portions of the
sidewall, forward tangent to 150-in. aft and aft tangent to 274 in. forward,
will be obtalined by adjusting the width of the trowel material exit slot,
as shown in the following sketch:
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IV.C. Sidewall Insulation (cont)
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When the first transport pot is empty, another full pot will be installed as
previously described. This operation will be continued until sidewall insu-
lation is applied in an area starting 12-in. aft of the forward tangent and
continuing to a point 12-in. forward of the aft tangent. The 12-in. wide
areas at each tangent will not be insulated at this time so that the caster
on the dome and propellant sweep templates will be in contact with the case
wall during propellant boot installation. All sidewall installation tooling
will be removed from the chamber, and the 24 hr ambient cure cycle will begin,
followed by 48 hr at 135°F.

0.25

D. PROPELLANT BOOT INSTALLATION

The forward and aft dome sweep templates will be adjusted to pro-
duce the required 0.65-in. boot thickness. DC-Q-92 silicone materials will
be applied to the forward and aft dome insulation surfaces which require
release. An IBT-106 forward propellant boot will be troweled over the released
insulation surface using the method demonstrated in Task II of Contract NAS3-
11224. The 12-in. wide area between the tangent and the cured sidewall will
be filled after the dome portion of the propellant boot is installed. The
same procedure will be followed to install the aft propellant boot. A wooden
ramp will be placed over the uncured aft boot to provide egress of tooling and
personnel. The boots will be cured for 24 hr at ambient, followed by 48 hr at
135°F,

E. FINAL OPERATIONS
The forward and aft sweep templates will be removed following dim-
ensional inspection of the cured propellant boots. Final dimensional, micro-

wave, and ultrasonic inspections will be completed. Any necessary repairs
will be accomplished.
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IV.E. Final Operations (cont)

During the previous three 24 hr ambient cure cycles following
application of dome, sidewall, and boot material, the casting adapter and
related components will be installed. After final inspection of the case
insulation, the precured aft propellant boot extension will be bonded to the
aft boot and then assembled to the casting adapter. The aft boot extension
design or material selection has not been determined. However, the most cost-
effective approach appears to be a heavy—-gage polyethylene or fiberglass sheet,
bonded to the aft boot and then attached to the casting adapter. The boot
extension is intended to prevent propellant from flowing between the aft dome
insulation and propellant boot during propellant ‘over-casting operations.

For this purpose, the bonded polyethylene sheet approach will be adequate and
relatively easy to install.

A vacuum collar will be installed around the edge of the forward
boot as a retainer during chamber movement. The forward boss and aft joint
will be sealed, the interior of the case will be purged with an inert nitrogen
gas environment, and the case will be moved to the .casting facility.

V. RECOMMENDED FOLLOW-ON EFFORT

A. PROPELLANT-TO~INSULATION BONDLINE TENSILE/SHEAR TESTS

The bondline tensile and shear tests reported in Volume I of this
final report indicated that a degradation occurred in the propellant-to-insu-
lation bond after the insulation was aged at 180°F for several weeks. Evolu-
tion of volatile materials in the PBAN-epoxy insulation during high temperature
exposure was the apparent cause of the bond degradation. Solvent wiping of
the insulation surface or liner application restored the bond integrity.
However, extended exposure of the motor insulation to temperatures higher
than the 135 + 5°F preheat and propellant cure temperature is not expected.
Thus, the 180°F drying temperature environment used during the moisture absorp-
tion tests was not indicative of the expected environment. To allay any doubt
as to the propellant-to-liner bond integrity, a series of double-plate, com-
posite tensile/shear specimen tests are recommended. The composite specimens
would consist of 4130 steel plate, Fuller 162-Y-22 primer, IBT-100 and IBT-106
insulation, and ANB-3350 propellant. The recommended test plan is as follows:

Amount of Specimens Description

As-processed insulation (control)
l-month exposure to 80°F, 50% RH
l-month exposure to 135 + 5°F
l-month exposure to 160 + 5°F

O O W0 W W

2-month exposure to 80°F, 50% RH,
followed by l-month exposure to 135 + 5°F
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V.A. Propellant-to-Insulation Bondline Tensile/Shear Tests (cont)

The foregoing test series could be accomplished in conjunction with one or
both of the other recommended follow-on efforts.

B. MATERIAL PERFORMANCE EVALUATION IN INTERMEDIATE SIZE MOTORS

Relative performance of the candidate insulation materials was
measured in subscale solid-propellant motor tests. The most difficult part
of the Tasks I and III motor tests was analysis of the insulation erosion
data at the higher Mach number regions in a motor with a small nozzle size.
Gas velocities from Mach 0.1 to 0.3 occurred in a relatively small region
cloge to the motor throat. The concern was that the region between Mach 0.1
and sonic flow was so narrow that erosion at the higher Mach number regions
would influence and distort erosion upstream at the lower Mach number regions.
V-44 rubber specimens were included in each of the motor tests as a control
to ensure that usable erosion data were obtained from the motor tests.

The erosion occurring in candidate insulation materials were
compared with V-44 rubber performance, and comparative information was ob-
tained. To design the 260-FL motor insulation system, the expected perform-—
ance of IBT~100 and IBT-~106 in large motor applications were estimated by
applying the following relationship:

IBT-100/106 Performance _ IBT-100/106 Performance ,  V-44 in LSRM
Expected in LSRM in LMISD Motor V-44 in LMISD Motor

Although this method of determining expected material performance
in large motors is empirical, it is not anticipated that a significant error
is introduced. However, a logical follow-on effort to the current program is
to demonstrate the installation process and performance of the selected insu-
lation system in an intermediate- ize motor, preferably in conjunction with
an existing or planned program that includes one or more intermediate size
motor test firings. The motor chambers would be insulated using the materials,
processes, and tooling concepts planned for the 260-FL motor Material per-
formance data up to approximately a gas flow Mach number region of 0.25 would
be obtained.

C. DETERMINE MATERIAL PERFORMANCE STANDARD DEVIATION VALUE

Results of the Requirements/Capability Analysis approach to insu-
lation system design led to a significant increase in the inert stage weight
over the TLR, exposure time, safety factor product method of calculation.
Insulation system weights were from 1.8 to 2.1 times greater. The two para-
meters which most affected the required insulation thicknesses were:

—_ s/i; the material erosion rate standard deviation, and

— P(I), the allowable probability of insulation burnthrough.
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V.C. Determine Material Performance Standard Deviation Value (cont)

Other parameters, such as allowable propellant defect size, propellant web
thickness and burning rate variability, imsulation thickness tolerance, and
core misalignment, had a much lesser effect. The allowable failure probabi-
lity, P(I), is a function of the mission reliability requirement, and is not
related to any specific insulation system. The insulation performance devi-
ation, (s)rj, is related directly to material characteristics, and therefore
can be measured and controlled. For the R||C Analysis, the material erosion
rate standard deviation was assumed to be 15.17%, which is the standard devi-
ation value for V-44 rubber observed in numerous Polaris A3 and Minuteman
motor tests. The newer IBX materials have not been tested in sufficient
quantity to establish a realistic performance standard deviation value. There-
fore, the R||C Analysis assumed that the standard deviation value for IBX
materials would be equivalent to that of V-44. It is apparent that if the
actual IBX material performance standard deviation value were in the order of
0.075, which is in the range of that observed for V-45, the overall 260-FL
motor insulation system weight could be significantly reduced, while still
maintaining an allowable failure probability of 107°.

The recommended follow-on effort would be to establish an IBT-100
and IBT-106 material performance standard deviation. IBT-100 and IBT-106
would be tested in the existing LMISD motor.

The performance reproducibility of the LMISD motors was satisfac-—
tory, and accurate recordings of pre- and posttest insulation specimen pro-
files were possible. The program would be accomplished in two phases:

Phase I - Determine IBT-100/IBT-106/V-44 control motor-to-motor
performance variability using material from one motor
lot of PBAN and asbestos.

Phase II - Determine IBT-100/IBT-106/V-44 control performance
variability using a second master PBAN and asbestos
material lot.
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V.C. Determine Material Performance Standard Deviation Value (cont)

The test matrix for the Phase I performance variability determination would be
as follows:

High Moisture Content Low Moisture Content
PBAN Content, PBAN Content, PBAN Content, PBAN Content,
low % high % low Z% high %
Variability Variability Variability Variability
Asbestos Content, 4 tests 4 tests 4 tests 4 tests
low %
Variability
Asbestos Content, 4 tests 4 tests 4 tests 4 tests
high %
Variability

In Phase II, four tests would be conducted with a new lot of PBAN, and results
would be compared with standard deviation for a single lot with content vari-
ability that produced the lowest deviation in previous tests. Four additional
tests would be conducted with a new lot of PBAN and asbestos, and results would
be compared with single lot deviation.

A total of 40 LMISD motor tests would be required to obtain a
meaningful material performance standard deviation. IBT-100, IBT-106, and
V-44 material would be processed into the test closure in the same way as
that for the Tasks I and III LMISD motor tests. The results of this program
would yield a S/X value for each material. 1In addition, the factors which
produce the material performance variation would be isolated.
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Total impulse (vacuum), lbf-sec

Vacuum specific impulse, lbf-sec/lbm
Standard* specific impulse, lbf-sec/lbm
Propellant weight, lbm

Web action time, sec

Action time, sec

Maximum nominal pressure @ 80°F, psia
Average pressure (web action time), psia
MEOP, psia

Maximum nominal thrust @ 80°F, 1bf

Average thrust (web action time), 1lbf

Web thickness, in

Propellant burning rate @ 600 psia, 80°F, in/sec
Burning rate pressure exponent

Nozzle throat area, initial/final, in?
Nozzle throat diameter, initial/final, in?
Nozzle half-angle, degrees

Expansion ratio, initial

Port/throat area ratio, average

* 1000 psia chamber pressure, optimum expansion
at sea level, 15° nozzle half-angle

Performance Summary, 260-in.-dia Motor for
Saturn IB DImprovement Study

Figure 2

12 Point
Fin & Shell

908,140,000
267.0
244.6

3,400,000
139.3
147.5

700

594
764
7,510,000
6,340,000
84.8
0.606
0.42
6235/6475
89.10/90.80
17.5

11.0
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Thickness Loss Rate, in./sec
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Summary of Nominal TLR-vs-Initial Mach Number Data
Obtained from LMISD Test Motors
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NASA CR-72584

RAW MATERIAL
Weight in motor, IBT-100 10,095 1b
10% loss factor 1,010
11,105 1b @ $1.00/1b
Weight in motor, IBT-106 12,450 1b
10% loss factor _1,245

13,695 1b @ $1.00/1b
Total Raw Material Cost

PROCESSING/ INSTALLATION:

IBT-100/IBT-106 batch mixing:
24,800 1b mixed @ $0.60/1b
IBT~100 installation in domes and nozzle:
10,095 1b installed @ $0.80,1b
IBT-106 installation in sidewall:
7,915 1b installed @ $0.72/1b
IBT-106 installation of propellant boots:
4,535 1b installed @ $1.32/1b
NDT Inspection:
10,095 1b domes/nozzle @ $0.48/1b
7,915 1b sidewall 1b @ $0.43/1b
4,535 1b boots @ $0.8G/1b
Total Processing/Installation Cost
Estimated Insulation System Production Cosf/Motor

(Excluding Fixed Fee and Tooling)

Estimated IBT-100/IBT-106 Insulation System
Production Cost

Figure 23

$11,105

13,695

14,880

8,076

5,700

5,986

4,846

3,404

3,628

$2l, 800

46,520

$71,320
=



NASA CR-72584

Raw Material

Weight in motor, IBT-100, 1b $10,095
10% loss factor 1,010

11,105 1b at $1.00/1b 11,105
Weight in motor, IBS-107, 1b 10,825
10% loss factor 1,085

$11,910 1b at $1.75/1b 20,843
Total raw material cost $31,948

Processing/Installation

IBT-100/1IBS-107 batch mixing:

23,015 1b mixed at $0.60/1b $13,809
IRT-100 installation in domes and nozzle:

10,095 1b installed at $0.80/1b 8,076
IBS-107 installation in sidewall:

6,835 1b installed at $0.75/1b 5,127
IBS-107 installation of propellant boot:

3,990 1b installed at $0.75/1lb 2,993
NDT Inspection:

10,095 1b domes/nozzle at $0.48/1b 4,846
6,835 1b sidewall at $0.43/1b 2,940
3,990 1b boots at $0.80/1b 3,192

Total Processing/Installation Cost $40,983

Estimated Installation System Production Cost/Motor
(Excluding Fixed Fee and Tooling) $72,931

*Estimated

Estimated IBT-100/IBS-107 Insulation System Production Cost

Figure 24



NASA CR-72584

RAW MATERIAL
Weight in motor, IBT-106 24,485 1b
10% loss factor 2,450

26,935 1b @ $1.00
Total Raw Material Cost

PROCESSING/INSTALLATION

IBT-106 batch mixing:
26,935 1b mixed @ $0.60/1b
IBT-106 installation in domes and nozzle:
12,035 1b installed @ $0.80/1b
IBT-106 installation in sidewall:
7,915 1b installed @ $O.72/lb
IBT-106 installation for propellant boots:
4,535 1b installed @ $1.32/1b
NDT Inspection:
12,035 1b domes/nozzle @ $0.48/1b
7,915 sidewall @ $0.43/1b
4,535 1b boots @ $0.80/1b
Total Processing/Installation Cost

Estimated Insulation System Production Cost Motor
(Excluding fixed fee and tooling)

Estimated IBT-106 Insulation
System Production Cost

Figure 25

$16,161

9,628

5,700

5,986

5,777

3,404

3,628

$26,935

50,284

$77,219




NASA CR~72584

RAW MATERIAL
Weight in motor, IBC-11l 11,995 1b
10% loss factor 1,200
13,155 1b @ $2.00/1b
Weight in motor, IBT-106 13,320 1b
10% loss factor 1,335

14,655 1b @ $1.00/1b
Total Raw Material Cost

PROCESSING/ INSTALLATTION

IBC-111/IBT~106 batch mixing:
27,810 1b mixed @ $0.60/1b
IBC~111 installation in dome and nozzles:
11,955 1b installed @ $0.50/1b
IBT-106 installation in sidewall:
8,785 1b installed @ $0.72/1b
IBT-106 installation of propellant boots:
4,535 1b installed @ $L.32/1b
NDT inspection:
11,955 1b domes/nozzle @ $0.48/1b
8,785 1b sidewall @ $0.43/1b
4,535 1b boots @ $0.80/1b
Total Processing/Installation Cost

Estimated Insulation System Production Cost/Motor
(Excluding Fixed Fee and Tooling)

Estimated IBC-111/IBT-106 Insulation
System Production Cost

Figure 26

$26,310

16,686

5,978

6,326

5,986

5,739
3,778

3,628

$40,965

48,113

$89,078



NASA CR-72584

RAW MATERIAL
Weight in motor, L40SD-80 21,165 1b
10% loss factor _2,120
23,285 1b @ $2.80/1b
Weight in motor, IBT-106 14,625 1b

10% loss factor 1,465
16,090 1b @ $1.00 1b
Total Raw Material Cost

PROCESSING/ INSTALLATION

L0osD-80/IBT-106 batch mixing:
39,375 1b mixed @ $0.60/1b
40sD-80 installation in domes and nozzle:
21,165 1b installed @ $0.50/1p
IBT-106 installation in sidewall:
10,090 1b installed @ $0.72/1b
IBT-106 installation of propellant boots:
4,535 1b installed @ $1.32/1b
NDT inspection:
21,165 1b domes/nozzle @ $0-48/1b
10,090 1b sidewall @ $0.43/1b
4,535 1b boots @ $0.80/1b

Total Processing/Installation Cost

Estimated Insulation System Production Cost/Motor (Excl. Fixed
Fee and Tooling)

Estimated LOSD-80/IBT-106 Insulation
System Production Cost

Figure 27

$65,198

16,090

23,625

10,583

7,205

5,v80

10,.09

4,33y

3,628

$81,288

65,225
$146,513




NASA CR-72584

RAW MATERIAL
Weight in motor, IBC-100 3,710 1b
10% loss factor __ 315
4,085 1b @ $1.00/1b
Weight in motor, USR-3800 3,620 1b
10% loss factor 365
3,985 1b @ $1.40/1b
Weight in motor, IBT-100 12,450 1b
10% loss factor _1,245
13,695 1b @ $1.00/1b
PROCESSING/ INSTALLATION

IBT-100/IBT~106 batch mixing:
17,789 1b mixed @ $0.60/1b
IBT-100 installation in fwd dome;
3,710 1b installed @ $0.8G/1b
USR-3800 installation in aft dome and noézle;

3,620 1b installed @ $6.20/1b*

$ 4,085

$ 5,579

$13,695

10,668

2,968

22,1k

*¥$S.00/1b V-LL installed (V-4b raw material cost, $3.20 - USR-3800 raw

material cost, $1.80).

Estimated IBT~100/USR-3800/IBT-106
Insulation System Production Cost

Figure 28, Sheet 1 of 2

$23,359
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Processing/Installation (cont.)

IBT-106 installation in éidewall
7,915 1b installed @ $0.72/1b
IBT-106 installation of propellant boots:
4,535 ;b installed @ $1.32 1b
NDT Inspection:
3,710 1b dome @ $0.48 1b
7,915 1b sidewall @ $.43/1b
4,535 1b boot @ $0.80/1b
Total Processing/Installation Cost

Estimated Insulation System Production Cost/Motor
(Excluding Fixed Fee and Tooling)

Estimated IBT-100/USR-3800/IBT-106
Insulation System Production Cost

Figure 28, Sheet 2 of 2

$5,700

5,986

1,781

3,404

3,628

$56,579

$79,938
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Tooling common to all candidate insulation systems;

Truss beam (1) $18,000
Truss beam support (1) 4,000
Insulation pot stand (1) 6,000

$28,000

Porward dome - troweled:
Sweep template (1) $10,000

Forward dome - case:

Forward dome mold, female (1) $ 2,500
Forward dome mold, male (6) 36,000
$38,500

Sidewall - troweled:

Movable trowel, weighted (1) $ 3,500
Ramp (1) 800
Lightweight insulation pot (2) 10,000

$1h, 300

Aft dome and nozzle -~ troweled:

Sweep template, dome (1) $ 8,000
Spider support (1) 6,000
Sweep template, nozzle (1) 800
Nozzle cure shroud (1) 1,000

$15,800

Aft dome and nozzle -~ cast:

Aft dome mold, female (1) $ 1,500
Aft dome mold, male (6) 24,000
Nozzle mold, female (1) 800
Nozzle mold, male (L) 10,000

$36,300

Tooling Estimate for Various Insulation
System Installation Methods

Figure 29, Sheet 1 of 2
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7. Propellant boots = troweled:

Sweep template, fwd boot (1)
Sweep template, aft boot (1)
Vacuum bag, fwd (1)
Vacuum bag, aft (1)

8. Nozzle - pressure cured:

Mandrel
Vacuum bag

Tooling Estimate for Various Insulation
System Installation Methods

Figure 29, Sheet 2 of 2

$ 2,000
3,000
800
2,000

$ 7,800

$ 8,000
800

$ 8,800
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2" Dia 4" Dia 8" Dia 12" pia
Station Tocation No Voids Void Void Void Void
1. Ign. Boss 1.57 1.58 1.59 1.61 | 1.63
2. Fwd. Equator - 1.16 1.17 1.18 1.20 1.22
3. Sta. 2 plus 1.09 1.10 1.11 1.13 1.15
35-in.
4, Sta. 2 plus .68 69 .70 .72 e
80-1in.
5. Sta. 2 plus .13 14 .15 .17 .19
150~1in.
5a.. Sta. 8 minus .13 1L .15 17 .19
300~-in.
6. Sta., SBmminus .18 .19 .20 .22 2L
27h-in.
7. Sta. 8 minus .38 .39 ] L2 L5
Y47-in.
8. Aft Equator .92 .95 97 1.03 1.08
9. Sta. 8 plus 9L 97 .99 1.05 1.10
12.5-1in.
10. At 240-in.-dia 1.8k 1.87 1.90 1.95 2.02
11. At 220-in.-dia 3.26 3.29 3.32 3.39 3.45
12. At 200-in.-dia 4.70 L.7h .77 4.85 L.92
13. Nozzle Joint 6.99 7.03 7.08 7.17 7.26
(180~in.-dia)
1h. At 165-in.-dia 7.95 N/A N/A /A N/A
15. 140-in.-dia 2.60 N/A N/A N/A N/A
16. At 110-in.-dia 2.60 N/A N/A N/A N/A

Calculated Insulation Thicknesses Required to Protect
Against Propellant Void Diameters of 0-, 2-, 4-, 8-, and 12-in.

Figure 31
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Insulation Weight*, 1b

43,000

41,000 : /////

39,000 \ ’/////

37,000 Ve

35,000
0 2 4 6 8 10 12 14

Allowable Propellant Void, dia/in.

*Excluding Propellant Boots

Insulation Weight—vs-Allowablé Propellant Void Diameter

Figure 32
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NASA CR-72584

Raw Material:

6 Batches of IBT-100
@ 4500 1b/batch

L]

27,000 1b @ $1.00/1b $27,000

5.5 Batches of IBT-106
@ 4500 1b/batch

H

24,750 1b @ $1.00/1b 24,750

Total Raw Material Cost $ 51,750

Processing/Insulation:

IBT-100/IBT~106 batch mixing:
51,750 1b mixed @ $0.60/1b $31,050

IBT-100 installation in domes and nozzle:
23,480 1b installed @ $0.80/1b 18,874

IBT-106 installation in sidewall:
16,630 1b installed @ $0.72/1b 11,974

IBT-106 installation of propellant boots:
4,535 1b installed @ $1.32/1b 5,986

NDT Inspection;

23,480 1b domes/nozzle @ $0.48/1b 11,271

16,630 1b sidewall @ $0.43/1b 7,151

4,535 1b propellant boots @ $0.80/1b 3,628
Total Processing/Installation Cost 89,934
Estimated Insulation System Production Cost per Motor $141,684

(Excluding Fixed Fee)

Estimated Initial Tooling Cost $ 75,900

Estimated IBT-100/IBT-106 Insulation
System Production Cost

Figure 34
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Figure 35

Bowl for Vertical Batch Mix Stations
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Figure 36

Propellant Liner Transfer Pot
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Figure 38

Heavy-Duty Equipment Truss for 260~-SL Motor Insulation Processing
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Aft Dome Sweep Template Concept
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APPEND IX

COST BASIS FOR INSULATION PROCESSING OPERATIONS
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Material Cost

IBT-100 $1.00/1b
IBT-106 1.00/1b
IBT-107 1.75/1b
IBC-111 2.00/1b
40SD-80 2.80/1b

Assumed 107 Material Loss Factor

Batch Mixing at A-DD: $600/10001b

Estimated Installation Span Times (See Volume II)

IBT-106 Sidewall ~ Troweled Hr Shifts
Setup time 8 @)
Installation 36 (4.5)
Cure, ambient 24 (3)

135°F 48 (6)
Clean-up 8 (L
TOTAL 124 hr (15.5 shifts)

IBT-100 Domes - Troweled Hr Shifts
Setup time 8 (1)
Installation 32 (4)

Cure, ambient 24 (3

135°F 48 (6)

Clean-up 8 (1)
TOTAL 116 hr (15 shifts)

IBT-106 Propellant Boots (Troweled) Hr Shifts
Setup time 8 (1)

Fwd boot installation 24 (3

Aft boot installation 32 (4)

Cure, ambient 24 (3)

135°F 48 (6)

Clean~up 16 (2)
TOTAL 152 hr (19 shifts)

Page 1
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Estimated Installation Span Times (see Volume II) (cont)

IBC~-111 Domes (cast) Hr Shifts
Setup time 24 (3

Cast time, fwd 12 (1.5

Cast time, aft 12 (1.5)
Cure, ambient 24 (3
135°F 48 (6)
Mold removal 8 (D
Fill joints 8 (1)
Clean-up _l6 (2)

TOTAL 152 hr (19 shifts)

Estimated Labor Hours and Cost

1. Domes/Nozzle (basis, 10,000 1b Installed)
Setup S/H H/H
6 operators - 1 shift 8 48

Forward Dome - Troweled

6 operators -~ 4 shifts 192
1 foreman - 4 shifts 32
1 engineer - 4 shifts 32

Aft Dome - Troweled

6 operators - 4 shifts 192
1 foreman - 4 shifts 32
1l engineer - 4 shifts 32

Nozzle -~ Troweled

6 operators ~ 3 shifts 144
1 foreman - 3 shifts 24
1 engineer - 3 shifts 24

Page 2
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Estimated Labor Hours and Cost (cont)

1. Domes/Nozzle (basis, 10,000 1b Installed) (cont)
Cure Time S/H H/H
2 hr/shift of cure - 20
Clean-Up
6 operators - 1 shift 8 48
TOTAL TIME 192 644
COST $7,924
$7,924 ,
10.000 1b - $0.80/1b installed
2. Sidewall (basis 8,000 1b Installed)
Setup
6 operators - 1 shift 8 48

Sidewall -~ Troweled

8 operators ~ 4.5 shifts 288
2 foremen - 4.5 shifts 72
2 engineers -~ 4.5 shifts 72

Cure Time

2 hr/shift of cure - 20
Clean-Up
6 operators - 1 shift 8 _48
TOTAL TIME 160 404
COST $5,668
§%égg§ib = $0.72/1b installed
3. Propellant Boots (Basis, 4,500 1b Installed)
Setup
6 operators -~ 1 shift 8 48

Page 3
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Estimated Labor Hours and Cost (cont)
3. Propellant Boots (basis, 4,500 1b Installed) (cont)

Forward Boot - Troweled S/H H/H
6 operators - 3 shifts 144
1 foreman -~ 3 shifts 24
1 engineer - 3 shifts 24

Aft Boot - Troweled

6 operators - 4 shifts 192
1 foreman - 4 shifts 32
1 engineer - 4 shifts 32

Cure Time
2 hr/shift of cure - 20

Clean~Up/Inspection Assistance

6 operators - 2 shifts 96
1 foreman - 2 shifts 16
TOTAL TIME 136 500
COST $5,922
$5,922 - ,
%500 1b $1.32/1b installed
4, Cast Domes/Nozzle (basis, 12,000 1b Installed)
Setup
6 operators - 3 shifts 144
1 foreman - 3 shifts 24
1 engineer - 3 shifts 24

Forward Dome - Cast

6 operators -~ 1.5 shifts 72
1 foreman - 1.5 shifts 12
1 engineer - 1.5 shifts 12

Page 4
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Estimated Labor Hours and Cost (cont)

4, Cast Domes/Nozzle (basis, 12,000 1b Installed) (cont)

Nozzle -~ Cast S/H
6 operators - 1.5 shifs
1 foreman ~ 1.5 shifts 12
1 engineer -~ 1.5 shifts 12

Cure Time

2 hr/shift of cure -

Mold Removal

4 operators - 1 shift 8

Fill Joints

2 operators - 1 shift 8
Clean-Up
2 operators ~ 2 shifts 16

TOTAL TIME 152

COST
ig ggé 1p = $0.50/1b installed
9

NDT Inspection: 607% of installation cost
Domes /Nozzle: $0.80.1b x 60%
Sidewall: $0.72/1b x 60%
Propellant Boots: $1.32/1b x 60%

L]

Page 5

H/H
72

20

32

16

32
460

$5,922

$0.48/1b
$0.43/1b
$0.80/1b
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San Jose, Calif. 95124
Attn: Mr. D. E. Ulery

Ferro Corp., Cordo Div.

3512-20 Helms Ave.

Culver City, Calif 90230

Attn: Mr. M. Scott, Technical Sales

Fiberite West Coast Corp.
690 No. Lemon St.

P.0. Box 738

Crange, Calif.

Attn: Mr. H. Christensen



Dow Corning Corp.

1299 Bayshore Blvd.
Burlingame, Calif.

Attn: Mr. L. C. Diebler

General Electric Co.
401 Lesser St.

Oakland, Calif. 94601
Attn: Mr. F. E. Stanko

Atlantic Research Corp.
Henry G. Shirley Memorial Highway at
Edsall Rd.
Alexandria, Virginia 22314
Attn: Mr. E. L. Olcott,
Director Materials Dept.

Garlock, Inc.

220 E. Grand Ave.

San Francisco, Calif.
Attn:

94080
Mr. J. W. Wright, Manager
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Products Research and Chemical Corp.

2919 Empire Ave.

Burbank, Calif 91504

Attn: Mr. D. Corkill, Manager,
Engineering Service Dept.

Ohio Rubber Co.

Ben Hur Ave.

Willoughby, Ohio 44094

Attn: Mr. G. S. Hackel,
Product Sales Manager

Minnesota Mining and Manufacturing Co.
1210 University Ave.
St. Paul, Minnesota
Attn: Mr.

55104
J. W. Davis, Plastics Div.

The DeVilbiss Co.
1335 No. Tenth St.
San Jose, Calif 95112
Attn: Mr. W. T. Jacobs



